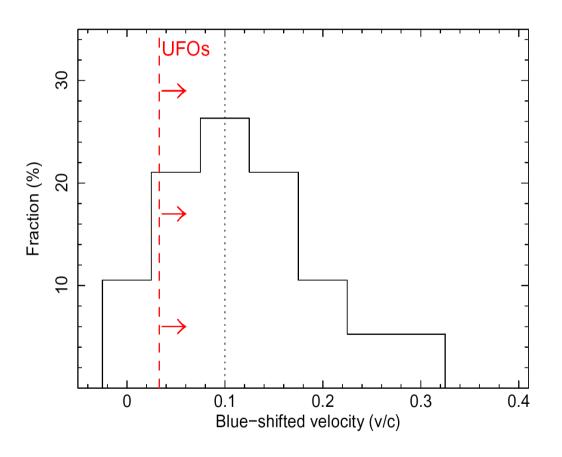

Discovery of Ultra-Fast Outflows (UFOs) in Radio-Loud AGN

Rita Sambruna NASA's GSFC


Thank you to:

- Francesco Tombesi
- James Reeves, Valentina Braito, Lucia Ballo, Max Cappi
- Group Publications: Tombesi et al. 2010, ApJ, subm Reeves et al. 2010 ApJ, subm RMS et al. 2009 ApJ, 700, 1473 Reeves et al. 2009 ApJ, 702, L87

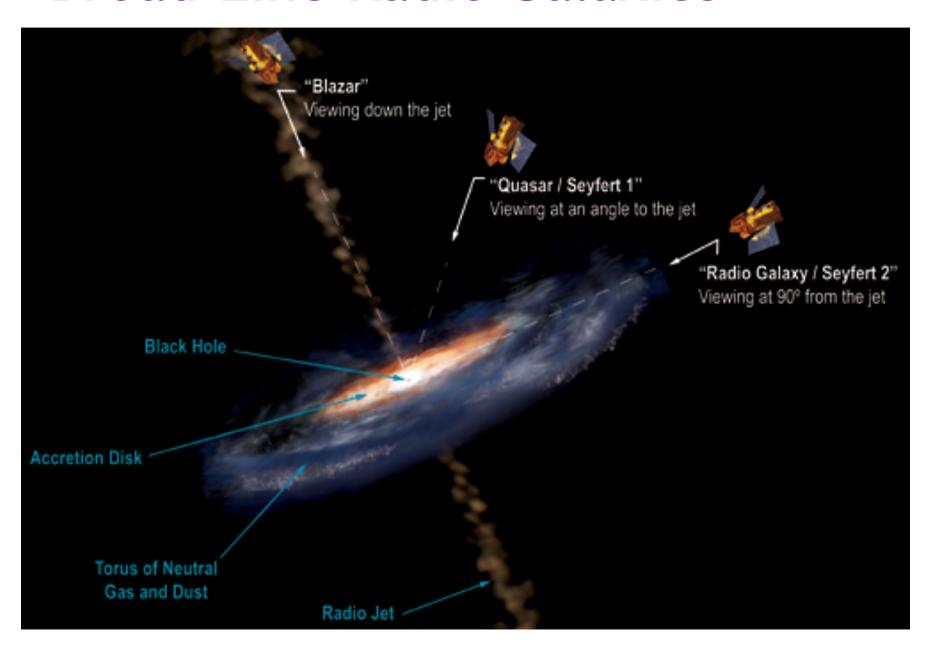
Ionized gas in radio-quiet AGN

UFOs common in radio-quiet AGN

Tombesi et al 2010, A&A, subm:

XMM Survey of z<0.1 Seyfert galaxies (44 sources, 104 spectra)

Around the BH in radio-loud AGN


- Until recently, little or no evidence for ionized diffuse gas on sub-pc scales
- Are the central engines of RL AGN "empty"?
- Powerful radio jet sweeping away material
- Jet only mediator of energy with large-scale environment
 - → "radio mode" feedback

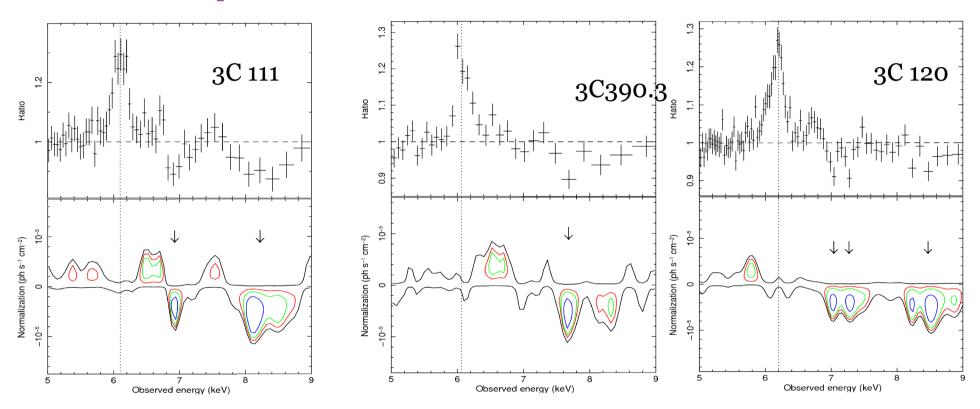
Tales of change

Deep Chandra & XMM gratings:

- First detection of warm absorber on kpc-scales in 3C382 (Reeves et al. 2009; Torresi et al. 2010)
- Evidence for emitter & absorber in 3C445 on sub-pc scales (Reeves et al. 2010)

Broad-Line Radio Galaxies

Suzaku observes BLRGs


Our Program: BLRGs at z<0.1

- 3C 390.3: 100 ks
- 3C 382: 100 ks
- 3C 445: 120 ks
- 3C 111: 100 ks
- + BAT spectrum from 9 months survey (Tueller et al. 2008)

In GTO Program:

• 3C 120: 160 ks (Kataoka et al. 2007)

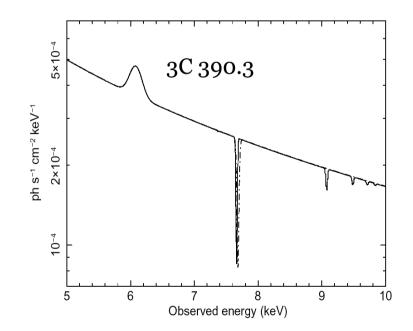
Absorption features in 7-10 keV

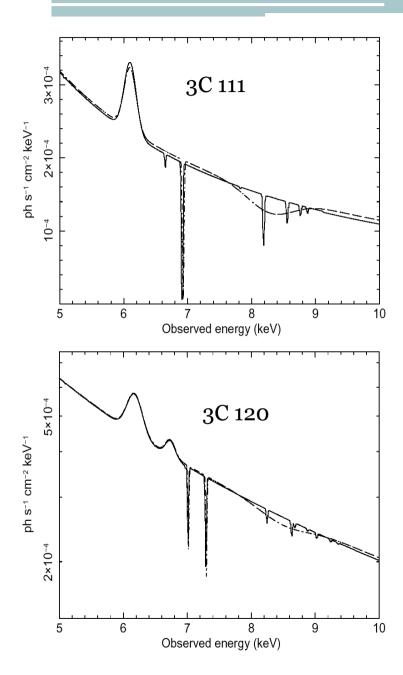
<u>Uniform spectral analysis</u>:

- Reduction and analysis of all XIS-FI spectra in the 4-10keV
- Baseline model: absorbed power-law + Gaussian Fe K emission lines
- Absorption lines search with energy-intensity contour plots
- Detection probability from extensive Monte Carlo simulations

Source	ID	${ m E} \ ({ m keV})$	σ (eV)	$\frac{\mathrm{EW}}{(\mathrm{eV})}$	$\Delta \chi^2 / \Delta \nu$	F-test	МС
3C 111	$\begin{array}{c} \text{Ly}\alpha\\ \text{Ly}\beta\text{-Ly}\gamma\text{-Ly}\delta \end{array}$	$7.26(6.92)_{-0.03}^{+0.03} 8.69(8.29)_{-0.08}^{+0.13}$	$10^{a} \\ 390^{+270}_{-70}$	-31 ± 15 -154 ± 80	$\frac{13/2}{40/3}$	99.9% ≥99.9%	99% ≥99.9%
3C 390.3	$\text{Ly}\alpha$	$8.11(7.68)_{-0.04}^{+0.04}$	10^a	-32 ± 16	14.6/2	99.9%	99.5%
3C 120a			10^{a} 10^{a} 500^{a}	$ > -29^b $ $ > -32^b $ $ > -160^b $			
3C 120b	$egin{array}{c} \mathrm{K}lpha \ \mathrm{Ly}lpha \ \mathrm{K}eta ext{-}\mathrm{Ly}eta \end{array}$	$7.25(7.02)_{-0.03}^{+0.03}$ $7.54(7.30)_{-0.04}^{+0.04}$ $8.76(8.48)_{-0.12}^{+0.12}$	$10^{a} 10^{a} 360^{+160}_{-120}$	-10 ± 5 -12 ± 6 -50 ± 13	9.4/2 $10/2$ $18/3$	99% 99.3% 99.9%	91% 92% 99.8%
3C 382	• • •	$\equiv 8^a$	10^a	$> -20^{b}$			
3C 445		$\equiv 8^a$	10^a	> -45b			

⁽a) Parameter held fix during the fit.


- detected absorption lines E>7keV in 3/5 sources
- unresolved Fe XXV K-shell and Fe XXVI Lyman series lines
- common blue-shifted velocity of lines ~0.04-0.15c (UFOs)


⁽b) Equivalent width lower limit at the 90% level.

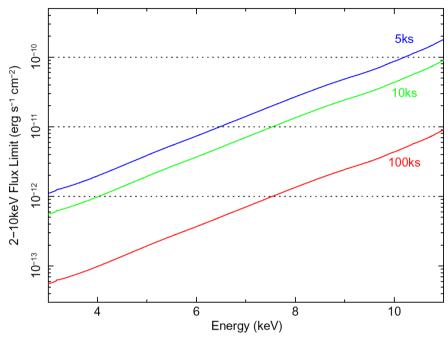
UFOs in BLRGs!

Source	$\log \xi$	N_H	v_{out}
	$({\rm erg~s^{-1}~cm})$	$(10^{22} \text{ cm}^{-2})$	(c)
3C 111	5.0 ± 0.3	$> 20^{a}$	$+0.041 \pm 0.003$
3C 390.3	$5.6^{+0.2}_{-0.8}$	$> 3^{a}$	$+0.146 \pm 0.004$
3C 120a			•••
3C 120b	3.8 ± 0.2	$1.1^{+0.5}_{-0.4}$	$+0.076 \pm 0.003$
$3C \ 382$			
3C 445	• • •		

(a) Lower limit at the 90% level.

UFOs parameters

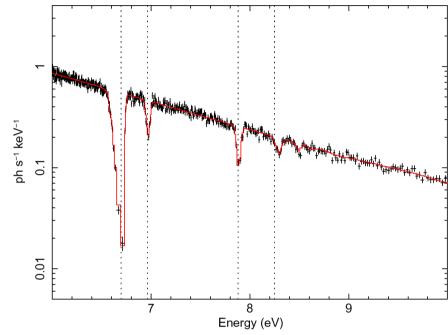
- Distances r<0.01-0.1pc (<10 2 -10 5 r_s)
- v_{ufo}>v_{esc} not always, some blobs might fall back
- L_{bol}/L_{Edd} ~0.01 (3C111) 1 (3C120, 390.3)
- $M_{out}/M_{acc}\sim 0.1-1$ for covering factor ~ 0.6
- $E_k \sim 10^{44} 10^{45} \text{ erg s}^{-1} \sim 0.1 L_{bol} (\sim 0.1 1 P_{jet})$
- Similar to Seyferts (Tombesi et al. 2010b)


Unified model of inflow/outflow in AGN by Ohsuga et al. (2009) Model A Model B Model C og p∕p₆ log p/p_b $\log \rho/\rho_{\rm b}$ Magnetic field lines (outward velocity = escape velocity) 40 R_S þ log Ε_{κα}/ρ₀ς² -9.5 -3.5 $\log E_{\rm rad}/ ho_0 \sigma^2$ log E_{rad}/ρ₀c²

R-MHD simulations of inflow/outflow in AGNs. Three different modes controlled by density parameter. Massive and fast disk winds/outflows driven by radiation pressure. Collimated jets along polar axis driven by magnetic forces. **Disk winds and jets not mutually exclusive; UFOs in both RQ and RL AGNs**.

Open Questions

- What is the true covering factor of the gas?
 - mass and energy carried
 - role of wind for large-scale feedback in RL
- What are physical & dynamical characteristics of outflows in RL?
 - need to study line profile & variability
- Is there a link between jet and outflow in AGN?
 - correlated multiw. variability monitoring, e.g. GRS1915


The role of IXO - the XMS

Flux limits (EW=10eV) (Tombesi et al. 2009)

Flux limits

- 2-10keV flux limits for 5σ detection of narrow absorption lines in the 3-11keV
- Different EWs, exposure times and responses
- Lines of EW=10eV (50eV) in \approx 6-9keV for \approx 10⁻¹² (10⁻¹³) erg s⁻¹ cm⁻² (expo 100ks)
- Spectral variability on time-scales of 5 (10) ks for $\approx 10^{-11}$ (10⁻¹²) erg s⁻¹ cm⁻²

 $\log \xi = 3 \text{ erg s}^{-1} \text{ cm}, N_H = 10^{23} \text{cm}^{-2}, v_{tu} = 1000 \text{km/s} \text{ (Tombesi et al. 2009)}$

Realistic spectra simulations

- Simulations of highly ionized and massive absorbers
- FeXXV/XXVI K lines detectable with high significance
- Line details (profile, energy, broadening) measured with high accuracy (>30 times Astro-H)
- Extend search for UFOs to fainter sources
- Time variability, dynamics of absorbers

Conclusions

- X outflows with moderately relativistic velocities: new component of radio-loud AGN
- Link wind-jet-disk
- IXO (& multiw obs): major player for its physics